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Abstract. Using the electromagnetic response function of an electric dipole
located within a dielectric geometry, we derive the mathematical equivalence
between the classical response and quantum mechanical resonant dipole–dipole
interaction between two quantum objects (atoms, quantum dots, etc).
Cooperative spontaneous emission likewise emerges from this equivalence. We
introduce a practical numerical technique using finite difference time domain for
calculating both dipole–dipole interaction and collective spontaneous emission
in confined dielectric structures, where strong light–matter coupling might arise.
This method is capable of obtaining resonant dipole–dipole interaction over a
wide range of frequencies in a single run. Our method recaptures the results
of quantum mechanical second order perturbation theory for weak light–matter
coupling. In strong coupling situations such as near a photonic band edge,
second order Rayleigh–Schrödinger perturbation theory leads to divergences,
and instead Brillouin–Wigner perturbation theory is required. This is equivalent
to the use of a variational wavefunction to describe the exciton transfer between
initial and final states. We introduce a system of coupled classical oscillators,
that describes resonant dipole–dipole interaction and vacuum Rabi splitting in
the strong-coupling regime, and that provides an effective numerical scheme
based on the finite difference time domain method. This includes the effects of
quantum entanglement and the correlation of quantum fluctuations. We discuss
the crossover to Forster energy transfer when quantum correlations between the
dipoles are damped by strong environmental interactions.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.
Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal

citation and DOI.

New Journal of Physics 15 (2013) 083033
1367-2630/13/083033+28$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

http://www.njp.org/
http://creativecommons.org/licenses/by/3.0


2

Contents

1. Introduction 2
2. Weak coupling resonant dipole–dipole interaction (RDDI) and collective

spontaneous emission (CSE) 4
2.1. Resonant dipole-dipole interaction . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. Collective spontaneous emission . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. Computational method 7
4. Numerical results for weak light–matter coupling 9

4.1. Free space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2. RDDI with resonant cavity modes . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3. RDDI in photonic crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5. Strong light–matter coupling 15
5.1. Non-perturbative analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2. Equivalent classical oscillator model . . . . . . . . . . . . . . . . . . . . . . . 18
5.3. Illustrations and numerical results . . . . . . . . . . . . . . . . . . . . . . . . 19

6. Phonon dephasing and non-radiative damping 23
7. Conclusion 26
Acknowledgments 27
References 27

1. Introduction

Forster (or Fluorescence) resonant energy transfer (FRET) has played a vital role in biomedical
science in the past decade [1–3] and it has become an essential tool for investigating bio-
molecular structures. For example, FRET is nowadays used to quantify protein–protein,
protein–DNA interactions [1] and it has been also exploited as a means to study protein
conformational dynamics [1, 2] (see figures 1(a) and (b)). FRET is a process where two
atoms, molecules, quantum dots or chromophores exchange energy via resonant dipole–dipole
interaction (RDDI). RDDI is believed to play an important role in photosynthesis [4]. In
this case, there has been interest in the question whether RDDI transfer of excitation occurs
coherently or incoherently [5]. In the incoherent Forster energy transfer, the dipole oscillators
interact strongly with surrounding vibrational modes of the host structure on time scales short
compared to RDDI time scale. In this case, phase information of the oscillating dipoles is
lost during the transfer. On the other hand, very strong light matter interaction can lead
to coherent RDDI transfer. Coherent resonant energy transfer (CRET) is important for the
entanglement of qubits in quantum information processing systems [6]. CRET can also
have important consequences, especially in low temperature quantum many-body physics.
For example, it has been suggested [7] that excitons confined to photonic band gap (PBG)-
quantum well heterostructures may acquire photon-like effective mass, leading to effects such
as Bose–Einstein condensates at elevated temperatures [7].

Depending on the separation between the two quantum dipoles, RDDI can be classified
as far field or near field. In the former case, the interaction is mediated by real photons,
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Figure 1. Schematic representation of RDDI as used in FRET spectroscopy to
study unfolded (a) and folded (b) protein structures. The energy transfer rate as
function of inter-molecular distance is depicted in (c).

while in the latter scenario, virtual photons dominate the exciton exchange. Most RDDI based
bio-experiments operate in the near-field regime. More specifically, one chromophore in its
excited state (called donor) emits a real/virtual photon which is in turn absorbed by another
chromophore in its ground state (acceptor). Even though energy conservation is satisfied
between the start and the end of the process, the intermediate state does not have to conserve
energy. An important consequence of the nature of FRET and the uncertainty relationship is that
the interaction time is very small and hence the virtual photon has to be absorbed after a very
short propagation distance. In free space, the interaction is isotropic. In the near field regime,
the rate of transfer (norm squared of RDDI matrix element) falls as R−6, where R is the distance
between the two molecules. A typical dynamic range for FRET experiments in chromophores
is in the range of a few to tens of nanometers as depicted in figure 1(c).

It is possible to alter the strength and the directivity of RDDI by careful engineering
of the electromagnetic (EM) modes of the environment in which the interaction takes place.
By removing a band of EM modes as in the form of a PBG, one can vary the strength of
RDDI on scales longer than the resonant wavelength [8, 9]. However, on shorter length scales
(tens of nanometers) RDDI is dominated by virtual photons far outside of the PBG and the
interaction strength reverts to its value in ordinary vacuum [8]. Also directional stop-gaps in
the EM spectrum or changes in the degeneracy properties of certain modes, can affect the local
photonic density of states, leading to engineering of RDDI [10, 11]. Experiments have verified
that optical confinement structures directly affect RDDI [12–14].

The efficient numerical evaluation of RDDI in complex confined geometries is a necessity
for engineering both CRET and FRET responses at will. Current computation schemes rely
on direct calculation using second order Rayleigh–Schrödinger (RS) perturbation theory. This
involves the calculation of a principal value integral, and care must be taken to obtain the correct
numerical result near the singularity. When this integral oscillates, convergence problems often
arise. If the integral is analytically tractable, this obstacle can be overcome using convergence
factors [15]. However, when the dielectric geometry under consideration is complicated, this
approach is inapplicable and more advanced techniques are required to solve the convergence
problem. One possibility is the Longman algorithm [16] for treating oscillating integrals. Prior
to RDDI calculations, the EM modes and photonic dispersion relation of the system may be
required. For example in three-dimensional (3D) PBG structures, calculating the dispersion
curve along the Brillion zone edges does not suffice and one needs complete information about

New Journal of Physics 15 (2013) 083033 (http://www.njp.org/)

http://www.njp.org/


4

the 3D band structure at all wave-vectors before computing RDDI. At each point in the band
structure, the EM field has to be calculated and stored at the locations of the two atoms. Then,
the RDDI is obtained as a 3D integral over all modes. These factors make computing RDDI
inside complicated geometries very time consuming.

A numerically adequate method to solve some of the above problems was introduced
in [17]. It is based on classical oscillators and uses the finite difference time domain
(FDTD) method to compute RDDI in free space and some dielectric structures. However,
it is mathematically equivalent to using RS second order perturbation theory and encounters
divergences in the strong-coupling regime.

In this work, we demonstrate a computational method that simplifies the evaluation of
RDDI, using the numerical equivalence between RDDI and the classical dipole response
function [18]. Unlike previous works [17], we introduce a new approach capable of treating
geometries with strong resonant optical cavities and photonic band edges where second order
perturbation theory fails. Using a variational wavefunction expansion, we derive the time
evolution of the expansion coefficients. This non-perturbative quantum mechanical analysis is
then mapped to the problem of two interacting classical oscillators coupled to classical radiation.
This recaptures phenomena such as vacuum Rabi splitting [19], quantum entanglement between
the emitters and leads to an effective numerical scheme for investigating coherent RDDI
dynamics under extreme strong-coupling conditions.

Our paper is organized as follows. We begin with a brief review of the quantum mechanical
processes of RDDI and collective spontaneous emission (CSE). In section 3 we re-derive, using
the Green function approach, the equivalence between classical dipole emission and coherent
RDDI. This enables the use of conventional EM numerical methods such as the FDTD method
to compute RDDI. This method can be used to compute RDDI over a wide range of atomic
transition frequencies in one single run. In section 4 we compare FDTD results with those
obtained using RS perturbation theory (analytically or numerically) for free space idealized
geometries, confined ideal metallic cavities and photonic crystals. In section 5 we investigate
strong-coupling RDDI dynamics using the variational formulation and map this to a system
of two interacting oscillators embedded in colored vacuum. We demonstrate the accuracy of
this technique by applying it to an analytically solvable example and we demonstrate its power
for resonant strong-coupling systems where conventional methods fail. Finally in section 6, we
discuss the difference in RDDI dynamics when the two dipoles constitute a quantum mechanical
pure state (CRET) and when each dipole experiences strong interactions with the environment
(FRET). In the former case, the correlations of the quantum fluctuations between the two dipoles
lead to more rapid oscillatory dynamics, whereas the latter case is described using mean-field
approximation to the complete quantum dynamics.

2. Weak coupling resonant dipole–dipole interaction (RDDI) and collective spontaneous
emission (CSE)

In this section we briefly review the physics of RDDI in the weak coupling regime. To
do so, we consider two identical two level atoms (or quantum dots) embedded in a certain
dielectric structure. We neglect non-radiative losses and dephasing effects associated with lattice
vibrations that destroy coherence in radiative transfer. Furthermore, we assume that one atom is
initially in its excited state while the other is in the ground state. In other words, the two atoms
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taken together have only one exciton. This scenario is sufficient for obtaining the values of both
RDDIs and CSE inside any photonic structure.

2.1. Resonant dipole-dipole interaction

In the absence of strong light–matter coupling, RDDI is described by second order RS quantum
mechanical perturbation theory [15]. Resonant and non-resonant contributions to RDDI can be
described using two Feynman diagrams [15]. The interaction between matter and radiation is
described using the multipolar Hamiltonian in the dipole approximation

Hint =

∑
λ

HIλ = −

{
_
µa ·

_

E (ra)+ _
µb ·

_

E (rb)
}
. (1)

Here, the index λ runs over all possible parameters that characterize the photonic modes. For
instance, in free space λ≡ {k, σ } where k is the mode wavevector and σ denotes polarization.
For a photonic crystal environment, λ≡ {k, n} runs over all Bloch wavevectors and band
numbers n. For localized cavity modes, λ is a discrete index that includes all different
photonic states characterized by their mode indices. In equation (1) _

µa,b are the atomic
dipole moment operators of atoms located at positions ra,b and the electric field operator

associated with eigenfrequencies ωλ is given by
_

E(r)= i
∑

λ

√(
h̄ωλ

2ε0V

)
{aλ EE∗

λ(r)− a+
λ

EEλ(r)}.

In addition, ε0 is the free space permittivity, h̄ is the Planck’s constant and V is the volume
(or the mode volume in case of localized EM modes). Finally, aλ and a+

λ are the annihilation
and creation operators and EEλ(r) is the normalized electric field vector associated with the
photonic mode under consideration [15], obtained by solving Maxwell’s equations under the
appropriate boundary conditions. Assuming one atom is initially excited while the other is in its
ground state, a straightforward treatment of Hamiltonian (1) using the RS perturbation theory
yields the RDDI expression (transition matrix element for exciton exchange between the two
atoms) [15]

M (ω10)=

∑
λ

(
ωλ

2V ε0

) 
(
Eµa · EEλ (ra)

) (
Eµb · EE∗

λ (rb)
)

ω10 −ωλ
−

(
Eµa · EE∗

λ (ra)
) (

Eµb · EEλ (rb)
)

ω10 +ωλ

 . (2)

In equation (2) Eµa and Eµb are the vectorial dipole matrix elements of the first and the second
atoms, respectively, and they are chosen to be real. The atomic transition energy of both atoms
is given by E10 = h̄ω10 (the subscripts 1 and 0 refer to the excited and ground states of a bare
atom, respectively).

2.2. Collective spontaneous emission

Spontaneous emission is the process in which an excited atom interacts with the vacuum
fluctuation to emit a photon and return to its ground state. In free space, this is described by first
order perturbation theory leading to the famous Fermi’s golden rule. The rate of spontaneous
emission is not an intrinsic atomic quantity, but can be tailored by controlling the local EM
density of state (LDOS) surrounding the atom [20]. Scientific interest in both single and multi-
atom spontaneous emission has been rekindled by the possibility of strong light–matter coupling
in optical cavities and photonic crystals [21, 22] with sharp and abrupt features in the LDOS.
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Here light emission is no longer described as a simple Purcell effect [20] and novel features
may arise [23].

In this section we consider the case of two atoms sharing one exciton. Unlike the single
atom case, the two atoms may form an entangled state composed of a superposition of the
first atom excited and the second in ground state and vice versa. RDDI is the mechanism
responsible for entanglement and the RDDI coupling energy determines the energy shift due
to the formation of even or odd atomic superposition states [15]. More specifically, a system
composed of a pair of two-level atoms and one photon/exciton can exist in one of the three states∣∣ψ0,λ

〉
= |g1, g2, 1λ〉 or |ψ±〉 =

1
√

2
{|g1, e2, 0〉 ± |e1, g2, 0〉}. Here |ψ0,λ〉 is the state with both

atoms in ground states with one photon in the EM mode characterized by a set of parameters λ,
while |ψ±〉 consists of two atoms sharing one exciton and zero photons. In CSE the entangled
atoms in state |ψ±〉 emit a photon and relax to the state |ψ0,λ〉. The dynamics of this process
is described using a general state |ψ〉 = b(t) |ψ±〉 +

∑
λ aλ(t)|ψ0,λ〉 in the Schrödinger equation

ih̄ d|ψ〉

dt = H |ψ〉. Here, the Hamiltonian is composed of atomic, radiation and interaction parts:
H = HA + HR +

∑
λ HIλ where HA|ψ±〉 = h̄ (ωe +ωg)|ψ±〉, HA|ψ0,λ〉 = 2h̄ωg|ψ0,λ〉, HR|ψ±〉 =

0, HR|ψ0,λ〉 = h̄ωλ|ψ0,λ〉 and HIλ is defined by (1) and the expansion of the electric field operator.
In the first two relations the atomic operator HA acts only on the atomic part of the state,
while in the latter two HR affects only the radiation part. Here h̄ωe is the energy of a bare
excited atom, h̄ωg is the atomic ground state energy and 〈ψ0,λ′|HIλ|ψ±〉 ∝ δλ′λ. Projecting the
Schrödinger equation on the states |ψ±〉 and |ψ0,λ〉, yields (in the absence of any permanent
atomic dipole moment): ih̄ db

dt = h̄(ωe +ωg) b +
∑

λ V ±0
λ aλ and ih̄ daλ

dt = h̄(2ωg +ωλ) aλ + V 0±

λ b,
where V ±0

λ = 〈ψ±|HIλ|ψ0,λ〉 = (V 0±

λ )∗. Eliminating the rapid time-dependence using the
substitution b(t)= w(t)exp {i (ωe +ωg) t} and aλ(t)= cλ(t)exp {i(2ωg +ωλ)t} and employing
the Wigner–Weisskopf approximation [24], we obtain w(t)= w(0)exp

(
−

1
20t

)
exp (i�t). In

this expression, 0 =
2π
h̄2

∑
λ V 0±

λ V ±0
λ δ(ωe −ωg −ωλ) is the spontaneous emission decay rate

and �=
1
h̄2 PV

{∑
λ

V 0±

λ V ±0
λ

ωe−ωg−ωλ

}
is the Lamb shift, with PV denoting the principal value. Using

the interaction Hamiltonian (1), we find that V ±0
λ = γλ{Eµa · EE∗

λ(ra)± Eµb · EE∗

λ(rb)}, with γλ =

−i
√

2

√(
h̄ωλ

2V ε0

)
. A similar expression is obtained for V 0±

λ and we finally obtain the two-atom

spontaneous emission rate: 0± = 0a +0b ±0coll, where 0i =
π

2V ε0h̄

∑
λ

ωλ| Eµi · EEλ(ri)|
2δ(ωe −

ωg −ωλ), (i = a, b) represent the spontaneous emission rates from the individual atoms a and
b. The third term describes the modification in emission rate due to dipole–dipole interaction
and is called the collective (or cooperative) spontaneous emission rate

0coll (ω10)=
π

2V ε0h̄

∑
λ

ωλ

[(
Eµa · EEλ (ra)

) (
Eµb · EE∗

λ (rb)
)

+
(
Eµa · EE∗

λ (ra)
) (

Eµb · EEλ (rb)
)]

δ (ω10 −ωλ) , (3)

where ω10 = ωe −ωg.

We show below that 0coll is directly related to the imaginary part of the classical EM
response function calculated from Maxwell’s equations. In free space, 0coll is sizable only when
the distance between the two atoms is much smaller than the wavelength associated with the
atomic transition energy. In such situations, and in the case of Eµa = Eµb, direct substitution
of EEλ(ra)≈ EEλ(rb) in the formula of emission rate gives 0 = 0 when the system is in the
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anti-symmetric state |ψ−〉. Under these conditions emission is possible only when the system is
initially prepared in the symmetric state |ψ+〉.

3. Computational method

In this section we relate RDDI and CSE to the classical response function of the electric dipole.
While this connection was demonstrated previously [18] using correlation functions and the
fluctuation–dissipation theorem, our derivation based on EM emission from an electric dipole
is more transparent.

Consider the classical EM wave equation in a periodic dielectric medium with polarization
current source [25]

−

(
1

c2

∂2

∂t2
+ H

)
EQ (r, t)=

1

c2ε0
√
ε(r)

∂2

∂t2
Epex (r, t) . (4)

Here c is the speed of light and ε(r) is the dielectric function. The operator H =
1

√
ε(r)

∇ ×{
∇ ×

1
√
ε(r)

}
and EQ(r, t)=

√
ε(r) EE(r, t) where EE(r, t) is the electric field vector. In equation

(4). Epex(r, t) is the source electric polarization. For a single radiating atom located at Er ′, this
becomes Epex(r, t)= Epex(t)δ(r − r ′). Introducing the temporal Fourier transform of F{Epex(t)} =

ES(ω), it follows that(
ω2

c2
− H

)
EQ

(
r, r ′, ω

)
=

−ω2

c2ε0
√
ε(r)

ES (ω) δ
(
r − r ′

)
. (5)

The solution of equation (5) can be written in terms of the transverse and longitudinal
eigenmodes as follows:

EQ
(
r, r ′, ω

)
=

−ω2

c2ε0
√
ε (r ′)

c2

V

∑
k,n

[
QT

kn (r)⊗ QT∗

kn (r
′)

ω2 −ω2
kn

+
QL

kn (r)⊗ QL∗

kn (r
′)

ω2

]
ES(ω). (6)

Since our analysis here focuses on periodic media, the sum will be written explicitly over all
allowed Bloch wavevectors k and photonic bands n. In other words, here λ≡ {k, n}. In equation
(6), the transverse and longitudinal auxiliary field vectors are the eigenfunctions of the equations
H EQT

kn(r)= (ω2
kn/c

2) EQT
kn(r) and H EQL

kn(r)= 0, respectively (superscript T means transverse
and L stands for longitudinal) satisfying periodic boundary conditions over some large volume
V . In general, they are both 3D vector fields defined over coordinate space and they satisfy the

conditions [25]: ∇ · {
√
ε(r) EQT

kn(r)} = 0 and ∇ ×

{
1

√
ε(r)

EQL
kn(r)

}
= 0.

The symbol ⊗ in equation (6) denotes a tensor product and, for any two vectors Eu =

(u1, u2, u3) and Ev = (v1, v2, v3), w = u ⊗ v is an 3 × 3 matrix defined by its components
wi j = uiv j . Equation (6) can also be written as

EQ
(
r, r ′, ω

)
=

{
−1

V ε0
√
ε (r ′)

∑
k,n

[
QL

kn (r)⊗ QL∗

kn

(
r ′

)
+ QT

kn (r)⊗ QT∗

kn

(
r ′

)]
−

∑
k,n

ω2
kn

V ε0
√
ε (r ′)

QT
kn (r)⊗ QT∗

kn (r
′)

ω2 −ω2
kn

}
ES (ω) . (7)
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Using the completeness relations
∑
k,n

[QL
kn(r)⊗ QL∗

kn (r
′)+ QT

kn(r)⊗ QT∗

kn (r
′)] = V

↔

I δ(r − r ′)

and EQ(r)=
√
ε(r) EE(r), we finally obtain

EE
(
r, r ′, ω

)
+

1

ε0ε (r)

↔

I δ
(
r − r ′

)
ES(ω)

=

{
1

2V ε0

∑
k,n

ωkn ET
kn(r)⊗ ET∗

kn

(
r ′

) [
1

ω +ωkn + iδ′
−

1

ω−ωkn + iδ′

]}
ES(ω). (8)

Here δ′ is infinitesimally small number we have added to ensure that we retain only the
retarded part of the Green function [25]. The real and imaginary parts of (8) can be separated
using 1

ω−ωkn±iδ′ =
PV

ω−ωkn
∓ iπδ (ω−ωkn). Here PV is the principal value and δ is the Dirac delta

function.
Next we focus our attention on the case when r 6= r ′. For a polarization current of the

electric dipole pointing in the direction of the unit vector Eea, i.e. ES(ra, ω)= Sa(ω) Eea = SaEea, we
define the response function χba(ω)≡

Eeb· EE(rb,ra,ω)

Sa(ω)
, where we have used r = rb and r ′

= ra.
Here Eeb is another unit vector. The response function χba, representing the component of

electric field generated at point rb in the direction of Eeb due to a unit polarization field located at
ra and oscillating at frequency ω along the Eea vector, is then given by

χba(ω)=
1

2V ε0
PV {(I1 − I2)} −

iπ

2V ε0
(I3 − I4) . (9)

In the above equation, I1,2 =
∑

k,n ωkn ( EET
kn(rb) · Eeb)( EET∗

kn (ra) · Eea)
(

1
ω±ωkn

)
and I3,4 =∑

k,n ωkn ( EET
kn(rb) · Eeb)( EET∗

kn (ra) · Eea)δ(ω±ωkn). Here I1 and I3 correspond to the ω +ωkn

terms and I2 and I4 to the ω−ωkn terms. Since ωkn = ω−kn and Ekn = E∗

−kn and the summation
is over −∞< kx , ky, kz <∞ it follows that I1,2,3,4 are also real quantities

∴ Re {χba (ω)} =
1

2V ε0
PV

∑
k,n

ωkn


(

EET
kn (rb) · Eeb

) (
EET∗

kn (ra) · Eea

)
ω +ωkn

−

(
EET∗

kn (rb) · Eeb

) (
EET

kn (ra) · Eea

)
ω−ωkn

 . (10)

By comparing equation (10) with equation (2) we finally arrive at

M (ω10)= −µbµaRe

{
Eeb · EE (rb, ra, ω10)

Sa

}
= −µbµbRe {χba (ω10)} , (11)

where ω10 is the atomic transition frequency.
Equation (11) establishes the connection between quantum mechanical RDDI denoted by

M and the response function of a classical electric dipole. This implies that any of the widely
available EM numerical techniques can be used to compute RDDI in a complex dielectric
geometry.

A similar analysis leads to the relation between CSE of the two-atom system and χba. Given
the fact that I3,4 are both real quantities, it follows that

imag {χba (ω)} =
π

2V ε0

∑
k,n

ωkn

(
EET

kn (rb) · Eeb

) (
EET∗

kn (ra) · Eea

)
δ (ω−ωkn) . (12)

Here we have used the fact that δ (ω +ωkn)= 0 since ωkn is always positive.
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Comparing equations (3) and (12) we obtain the desired relation between the classical
response and CSE:

0coll (ω10)= 2
µbµa

h̄
imag {χba (ω10)} . (13)

Relations (11) and (13) facilitate the use of conventional EM techniques such as the FDTD
method to evaluate RDDI and CSE. In order to calculate RDDI and CSE rates, we replace the
first atom with a classical dipole current and then use FDTD to calculate the resulting radiation
at the position of the second atom. The Fourier transform of temporal electric fields are used
in equation (9) to obtain the response function. RDDI and CSE follow from equations (11) and
(13). In our calculations, we assume a time-localized Gaussian dipole current to cover a wide
spectral range. More specifically, Epex (t)= exp

(
− (t − tshift)

2 /T 2
0

)
Eeex where tshift controls the

start of the polarization current with respect to the simulation window and T0 is proportional to
the pulse width. We use units where the speed of light in vacuum, free space electric permittivity
and magnetic permeability are all set to unity. Material dispersion is neglected in order to
simplify our FDTD algorithm. If necessary, more involved FDTD codes [26] can be used in
order to take such effects into account.

We note finally that the above analysis is easily reduced to free space (periodic medium
with ε(r)= 1 throughout the unit cell) and localized modes in cavity structures. The latter case
follows by noting that an optical cavity with localized modes can be treated as a unit cell in
a periodic structure made of identical copies of the cavity with a period much larger than the
localization length of the cavity mode.

4. Numerical results for weak light–matter coupling

In this section we compare RDDI and CSE values obtained using the FDTD, with semi-
analytical results obtained using quantum mechanical perturbation theory. In order to validate
our numerical scheme; we consider the simple cases of free space, one-dimensional (1D) and
two-dimensional (2D) cavities, and 1D PBG structures.

We note that all simulations were run on a Intel quad processor (3.07 GHz), 64 bit machine,
which has 24 GB of RAM memory.

4.1. Free space

The 1D idealization corresponds to the interaction of two parallel planar quantum wells or
sheets of quantum dots. For simplicity we assume that the dipole transition moments of the
excitons are parallel and in the plane of the sheets. Then the radiation modes mediating
RDDI are 1D plane waves propagating in the direction

⇀

ez perpendicular to the sheets
(only photonic modes with electric field vectors parallel to the dipole moments of excitons
contribute to these calculations): Ek(r)= exp (i kzz). A direct substitution in the expression
for the RDDI and converting the discrete summation over kz to an integral yields: M =(
µaµb

4π Aε0

) ∫
∞

−∞

{
ωkexp (i kz R)
ω10−ωk

−
ωkexp (−i kz R)

ω10+ωk

}
dkz. In this idealized 1D geometry, the transverse area

A of the EM quantization box is also the area of the quantum wells having dipole moments of
µa andµb while R is the separation between the quantum well layers. In free space, ωk = c |kz|

and we write the atomic transition frequency ω10 = ck10. Using contour integration in the

complex plane, the above integral reduces to M =

(
µaµb

2Aε0

)
k10 sin(k10 R). Similarly, for an
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Figure 2. RDDI strength in one, two and 3D free space environments are
shown in (a)–(c) respectively as a function of the normalized resonant atomic
transition frequency. In each panel, blue solid line represents analytical results
obtained from second order perturbation theory while red dots shows numerical
results computed using FDTD method described in section 3. The normalization

constants are given by M1D =

(
µaµb

ARε0

)
, M2D =

(
µaµb

L R2ε0

)
and M3D =

(
µaµb

R3ε0

)
where

A (for the 1D case) and L (for the 2D case) are the area/length of quantum
wells/wires having a dipole moments of µa,b.

idealized 2D parallel quantum wires of length L , separated by a distance R, RDDI is given

by M =

(
µaµb

Lε0

)
k2

10
4 Y0(k10 R) where Y0 is the Neumann function of order zero. In 3D the RDDI

between a pair of quantum dots separated by distance R is given by [15] M =

(
µaµb

4πε0 R3

)
[(δi j −

3R̂i R̂ j)(cos(k10 R)+ k10 R sin(k10 R))− (δi j − R̂i R̂ j)k2
10 R2 cos(k10 R)]. Here R̂i ≡ R̂ · x̂i , where

R̂ is the unit vector between the dots and x̂i is a unit vector along the axis i .
Note the singular behavior of RDDI transition matrix element M for R = 0 in both 2D and

3D geometries. Figures 2(a)–(c) provide a comparison of the RDDI obtained using FDTD and
the corresponding exact analytical expression. Nearly, perfect matching is found in all cases.

Next we compare CSE calculated using FDTD with the corresponding analytical
expressions in 1, 2 and 3 dimensions. In 1D, starting from equation (3), we have
0coll =

πµaµb

2V εoh̄

∑
k ωk[E∗(ra)E(rb)+ E(ra)E∗(rb)]δ(ω10 −ωk), with photonic modes given by

propagating plane waves Ek(r)= exp (i kzz). Substituting in the above equation and using R =

|rb − ra|, we obtain 0coll =
πµaµb

4π Aε0h̄

∫
∞

−∞
ωk

[
exp (i kz R)+ exp (−i kz R)

]
δ(ω10 −ωk) dkz. Since

ωk = c|kz| it follows that 0coll =
µaµb

Aε0h̄ k10 cos(k10 R).

In 2D, a similar analysis in cylindrical coordinates yields 0coll =

(
µaµb

Lε0h̄

)
k2

10
2 J0(k10 R)where

J0 is the zeroth order Bessel function. Finally, in 3D 0coll =
µaµbk3

10
2πε0h̄

[
sin(k10 R)

k10 R + cos(k10 R)
(k10 R)2 −

sin(k10 R)
(k10 R)3

]
,
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Figure 3. CSE rate in 1D, 2D and 3D free space environment are depicted in
(a)–(c) respectively as a function of the normalized resonant atomic transition
frequency. The blue line is obtained using analytical results while red lines
represent calculations obtained from FDTD. The normalization constants are

given by 01D
coll =

(
µaµb

ARε0h̄

)
, 02D

coll =

(
µaµb

L R2ε0h̄

)
and 03D

coll =

(
µaµb

R3ε0h̄

)
where A (for 1D

geometry) and L (for 2D geometry) are the area/length of quantum wells/wires
having a dipole moments of µa,b.

where the two dipoles are separated by a distance R along the x-axis and their dipole moments
are aligned along the z-axis.

Figures 3(a)–(c) show the agreement between these analytical expressions and numerical
values computed using FDTD.

In both figures 2 and 3, the accuracy of FDTD is frequency dependent. Agreement with
analytical results is perfect at lower frequency and it deteriorates slowly as frequency increases.
In EM simulations, higher resolution is necessary for higher frequency. Another observation
is that loss of accuracy with frequency occurs more rapidly in higher dimensions. This can
be attributed to numerical dispersion of FDTD (deviation of computed wave velocity from
its real value due to discretization effects) which increases with dimensionality. In order to
avoid this effect, a smaller Courant factor, S = (c/n)(1t/

√
1x2 +1y2 +1z2), is required

where c/n is the speed of light in the medium, 1t is the time step and 1x, 1y and 1z
are the discretizations along the main axes. However, a smaller Courant factor is directly
translated into more time steps for the same spatial resolution and consequently more simulation
time.

In all simulations, the pulse parameters were chosen to be tshift = 33 × (R/c) and T0 =

0.33 × (R/c). The resolution in both 1D and 2D simulations were R/60 and 40 000 time steps
used. On the other hand, for 3D simulations, the resolution was R/30. The total simulation time
for the 1D, 2D and 3D cases were 6 s, 4 min and 1.86 h, respectively.

4.2. RDDI with resonant cavity modes

In order to test the utility of our numerical method, we consider RDDI between identical
parallel sheets of quantum dots placed within a perfect 1D mirror cavity with their dipole
moment vector parallel to the cavity walls, figure 4(a). The cavity EM modes are given
by Em(x)=

√
2/Lc sin(mπ x/Lc) where Lc is the cavity length and m is an integer index

that denotes the mode order. The RDDI M =
µaµb

2V ε0

∑
m ωm

{
Em(x)Em(x ′)

ω−ωm
−

Em(x)Em(x ′)

ω+ωm

}
for sheets

located at x and x ′. For x 6= x ′, the RDDI expression takes the form M =
µaµbω

2

V ε0

∑
m

Em(x)Em(x ′)

ω2−ω2
m

.
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Figure 4. Cross section schematic of planar light emitting structures inside an
ideal 1D cavity of length Lc (a) and linear light-emitting wires inside lossless
metallic ideal 2D square cavity of side length Lc (b). Locations of the two
interacting quantum objects are indicated in both figures.

Figure 5. RDDI values as a function of the resonant atomic transition frequency
for the configurations shown in figures 4(a) and (b), respectively. Blue lines
depict analytical results while red dots show numerical FDTD results. RDDI
obtained from RS perturbation theory diverges on cavity resonant conditions,
signaling this model’s inability to deal with strong coupling. This occurs since
second order RS perturbation theory does not adequately describe dressed states
and vacuum Rabi splitting. The normalization constants are given by MC

1D =(
µaµb

ALcε0

)
and MC

2D =

(
µaµb

L L2
cε0

)
where A and L are the transverse (in direction

perpendicular to the schematic cross section shown in figure 4) area/length of
quantum wells/wires having a dipole moments of µa,b and Lc is the cavity side
length.

The above quantity can be easily numerically evaluated. Figure 5(a) shows a comparison of M
obtained from the above calculations with FDTD simulations. Good agreement is observed.
In the FDTD computations, the parameters of the exciting current pulse were taken to be
tshift = 10 × (Lc/c) and T0 = 0.2 × (Lc/c). In addition, the spatial resolution was taken to be
Lc/200 and 120 000 time steps were used with an overall running time of ≈ 10 s.
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In the 2D scenario of figure 4(b), we consider two columns of quantum dots placed in
two different positions inside an idealized two dimensional mirror cavity. The EM modes inside
the cavity take the form Em1,m2(x, y)= 2/

√
L x L y sin(m1π x/L x) sin(m2π y/L y) and the RDDI

coupling is given by M =
µaµbω

2

V ε0

∑
m1,m2

Em1,m2 (x,y)Em1,m2 (x
′,y′)

ω2−ω2
m1,m2

.

Again we calculate the above expression directly (for the same parameters used in 1D case
and L x = L y ≡ Lc = 1) and compare the results with those obtained from FDTD. Figure 5(b)
reveals good agreement at most frequencies. The FDTD simulations parameters are identical to
those used for the 1D case and the simulation time is ≈ 35 s.

Closer inspection of figure 5(b), however shows that FDTD simulations predict a false
RDDI resonance at a normalized frequency f ≡ ωLc/2π c ≈ 5.7 (as indicated by the green
arrow in the figure). Increasing the simulation time or spatial resolution does not eliminate this
effect. The numerical error occurs since the 2D square cavity has four degenerate modes at
f ≈ 5.7. The correct RDDI results can be recovered by modifying the cavity dimensions to
L x = Lc and L y = Lc + δ and evaluating RDDI in the limit of δ → 0 according to L’Hopital’s
rule.

4.3. RDDI in photonic crystals

In this section we consider RDDI within PBG geometries [8, 9]. We first study RDDI in
a 1D multilayer structure. This model considers only coupling due to modes propagating
normal to the structure and neglects off-normal wave vectors. This simplification enables
comparison between FDTD numerical results and the RDDI computed semi-analytically using
the Floquet–Bloch theorem. We then demonstrate the versatility of our numerical scheme by
computing RDDI between two quantum dipoles embedded in a 2D photonic crystal structure.

The 1D multilayer structure, with lattice constant a (see figure 6(a)) consists of two
alternating layers: air with thickness 0.8a and a hypothetical non-absorbing material with 0.2a
thickness and ε(r)= 12. In this Kronig–Penny model [27], the EM modes are solutions of
the Helmholtz equation in each homogeneous region with Bloch boundary conditions. In other
words, the solution in each layer is written as E (l)

kn (z)= u(l)kn(z)exp (i kz) where l = 1, 2 denote
the solution in the air and dielectric layers, respectively. Using the periodic boundary condition
u(1)kn (−0.8 a)= u(2)kn (0.2 a), we obtain the band structure and the field profile corresponding to
each Bloch momentum k and band n at any point inside the crystal. The resulting band structure
is depicted in figure 6(b). Using the dispersion relation and the field profiles in equation (2), we
calculate the idealized 1D RDDI between dipoles located at the centers of two different silicon
layers separated by a distance of 5a (yellow arrows in figure 6(a)). Here, only one polarization is
considered and the summation over the Bloch momenta is replaced by

∑
k =

L
2π

∫
∞

−∞
dk, where

L is the overall length of the 1D system. In principle, Bloch modes from all photonic bands
contribute to RDDI. In practice, for atoms separated by five lattice constants, only the five bands
surrounding the transition frequency are required for accurate results. The field amplitudes are
normalized [25] according to

∫
D Q∗

k′m(z)Qkn(z) dz = Lδmnδk′k where Qkn (z)=
√
ε (z)Ekn (z)

and both m and n denote band numbers. Using the periodicity of ukn(z), the domain of
integration can be reduced to a single unit cell

∫
cell εr(z)u∗

kn(z)ukn(z) dz = a. A comparison
between the fully numerical FDTD scheme and the semi-analytical Kronig–Penny analysis is
shown in figure 6(c). Similar to the 1D free space case, here A is the overall transverse area of
the quantum wells having dipole moments of µa andµb.
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Figure 6. Schematic representation of 1D photonic crystal and its corresponding
band structure are shown in (a) and (b), respectively. Comparison between RDDI
coupling values obtained analytically from second order RS perturbation theory
and from the numerical scheme of section 3 is illustrated in (c). Singular behavior
around the photonic band edge reveals the inadequacy of the RS method for
strong light–matter coupling. The normalization constant is given by MPBG

1D =(
µaµb

Aaε0

)
where A is the area of quantum wells (in a plane perpendicular to the 1D

periodic structure) having dipole moments of µa,b and a is the periodicity of the
one dimensional PBG structure.

The FDTD results are obtained using a multilayer structure composed of 4001 unit cells
excited with a Gaussian polarization current of T0 = 0.4 × (a/c) pulse width and the simulation
time was taken to be 5000 in units of a/c. In our computation, we used a large number of
layers and the simulations were terminated before the radiated electric field can bounce back
from the edge of the photonic crystal, ensuring that all Fabry–Perot resonances are eliminated
from the calculations. The comparison in figure 6(c) shows a good agreement between FDTD
calculations and those obtained using the Kronig–Penny model, except close to the band
edge where RDDI becomes singular. A proper treatment of this situation requires the non-
perturbative, strong-coupling analysis of section 5. We note that the RDDI value at the lower
edge of the second band does not show a singular behavior in spite of the zero group velocity at
that point. This is made possible since the local density of states at this band edge vanishes at
the center of the dielectric layer.

Finally we study dipole–dipole interactions of two quantum radiators embedded inside the
idealized 2D square lattice photonic crystal shown in figure 7(a). Here L represents the length
of EM quantization box along the dielectric rods which is also the length of quantum wires (in
a direction along the rods of the 2D photonic crystal) having a dipole moments of µa,b.

As before, the cylinders are made of a high dielectric, non-absorbing material of ε(r)= 12
in an air background, and are arranged on a square lattice. Each cylinder has a radius r = 0.2a
where a is the lattice constant. In our idealized system, only wavevectors perpendicular to
the cylinders are considered and the electric field is assumed parallel to the cylinders. The
two quantum dipoles are located at the centers of the two cylinders marked by different
colors/grayness. The band structure and RDDI values are depicted in figures 7(b) and (c),
respectively. The resonant behavior at the upper edge of the first band is a direct result of
vanishing group velocity and once again requires the more general treatment of section 5.

Very recently, another FDTD method for calculating RDDI was introduced [28]. While
our Green’s function method requires only one FDTD run in order to obtain RDDI and CSE
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Figure 7. Schematic of 2D photonic crystal (consisting of square lattice of rods
of dielectric constant ε(r)= 12 with radius r = 0.2 a in air and a lattice constant
a) and its corresponding band structure are shown in (a) and (b), respectively.
(c) RDDI coupling strength calculated using the FDTD numerical scheme of
section 3. Singularities near the band edges indicate the need for an improved
computational approach for strong light–matter coupling. The normalization

constant is given by MPBG
2D =

(
µaµb

La2ε0

)
where L is the length of quantum wires (in

a direction along the rods of the 2D photonic crystal) having a dipole moments
of µa,b and a is the periodicity of the two dimensional square PBG structure.

values over wide range of frequencies, the authors of [28] require three different FDTD runs for
every frequency point. Moreover computations in [28] yield CSE and a final Hilbert transform
is needed to obtain RDDI. Both techniques compute RDDI corresponding to second order
perturbation theory [15]. However, in situations where the eigenmodes of the system are discrete
or when the principal value limit fails to exist, this perturbation approximation completely
fails and gives infinities. A non-perturbative approach is required in these strong-coupling
situations.

5. Strong light–matter coupling

RDDI in optical cavities with discrete modes or near certain band edges of photonic
crystal structures is associated with strong light–matter coupling. In these situations, simple
perturbation theory leads to divergent behavior. These singularities are also apparent in the
FDTD method of section 4. Previous calculations were based on treating RDDI as a perturbation
over the bare atoms. Moreover, these interactions were calculated using the RS perturbation
theory [15]. Near an isolated discrete mode or close to dispersion band edges, the relevant
atomic levels may be strongly dressed by the EM modes. Higher order approximations
are required to describe these strong interactions. For example, a variational wavefunction
approach was previously shown to recapture the phenomenon of vacuum Rabi splitting near
a PBG [29]. This method is equivalent to the use of Brillouin–Wigner perturbation theory [30].
Recently, it was shown that the phenomenon of atomic Mollow splitting in a strong external
field is recaptured using a self-consistent solution of the coupled Maxwell–Bloch (MB)
equations [31].

In this section we extend our FDTD method to treat such strong coupling situations. Our
generalized numerical method captures effects such as dressed atomic states and vacuum Rabi
splitting, thereby removing the unphysical divergences of standard perturbation theory.
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5.1. Non-perturbative analysis

Our analysis is based on the variational wavefunction method [29, 32]. Consider the Schrödinger
equation i h̄ ∂|ψ〉

∂t = H |ψ〉, where the Hamiltonian H = H0 + V consists of atomic and radiation
terms H0 (when the interaction is switched off) and the atom–photon interaction term V . We
denote the states of interest as |a〉 = |e, g, 0〉 , |b〉 = |g, e, 0〉 and |keλ〉 = |e, e, 1λ〉 and |kgλ〉 =

|g, g, 1λ〉. The first two represent states where one atom is excited with no photon while the
last two describe states with one photon in the EM mode defined by the set of parameters λ
while both atoms are excited or in their ground state. We consider a variational wavefunction
consisting of a superposition of these states with corresponding time-dependent variational
amplitudes

|ψ〉 = a(t) |a〉 + b(t) |b〉 +
∑
λ

kgλ(t)
∣∣kgλ

〉
+

∑
λ

keλ(t) |keλ〉. (14)

Substituting (14) back in the Schrödinger equation and projecting the result on each of the above
basis states yields four coupled differential equations for the variational coefficients:

i h̄
∂a

∂t
= E10a +

∑
λ

Va,gλkgλ+
∑
λ

Va,eλkeλ, (15a)

i h̄
∂kgλ

∂t
= h̄ωλkgλ + Vgλ,aa + Vgλ,bb, (15b)

ih̄
∂keλ

∂t
= (2E10 + h̄ωλ) keλ + Veλ,aa + Veλ,bb, (15c)

i h̄
∂b

∂t
= E10b +

∑
λ

Vb,gλkgλ+
∑
λ

Vb,eλkeλ. (15d)

In the above equations, Vα,β = 〈α|V |kβ〉 = (Vβ,α)∗ with α = {a, b} and β = {gλ, eλ}. Here E10

is the energy of the excited atomic state with respect to atomic ground state energy which
is taken to be zero. Note that our analysis does not invoke the rotating wave approximation
that can lead to incorrect answers in certain situations [32]. Taking the Laplace transformation
and denoting the Laplace transform of the coefficients by capital letters, we obtain the set of
algebraic equations:

i h̄s A(s)− i h̄a(0)= E10 A(s)+
∑
λ

Va,gλKgλ(s)+
∑
λ

Va,eλKeλ(s), (16a)

i h̄sKgλ(s)= h̄ωλKgλ(s)+ Vgλ,a A(s)+ Vgλ,b B(s), (16b)

i h̄sKeλ(s)= (2E10 + h̄ωλ) Keλ(s)+ Veλ,a A(s)+ Veλ,b B(s), (16c)

i h̄s B (s)= E10 B(s)+
∑
λ

Vb,gλKgλ(s)+
∑
λ

Vb,eλKeλ(s). (16d)

Here A(s), B(s), Kgλ(s) and Keλ(s) are the Laplace transforms of a(t), b(t), kgλ(t) and
keλ(t), respectively. In what follows, we assume the system is initially prepared in state |a〉

so that a(0)= 1.
In the above equations, each photonic mode is coupled to both atoms whereas there is

no direct coupling between the atoms. Since the atom–atom interactions are mediated only
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by photons, we can eliminate the two middle equations and obtain a system of two coupled
equations between the atoms:

(i h̄s − E10) A −0aa(s)A −0ab(s)B = i h̄, (17a)

(i h̄s − E10) B −0bb(s)B −0ba(s)A = 0. (17b)

In (17), we define the complex interaction energy parameters

0mn(s)=

∑
λ

{
Vm,gλVgλ,n

(i h̄s − h̄ωλ)
+

Vm,eλVeλ,n

(i h̄s − 2E10 − h̄ωλ)

}
, (18)

where subscripts m and n denote either atom a or b and m = n describes self-interaction.
The expression (18) is analogous to the perturbative RDDI expression (2) provided that we

set i h̄s = E10. However, near optical resonances and photonic band edges, this so called pole
approximation leads to unphysical singularities in RDDI. Our variational procedure circumvents
these divergences by enabling effects such as vacuum Rabi splitting [19] and provides the
correct physical behavior in such strong-coupling situations. In our more precise derivation
of (18) 0mn can have both real and imaginary parts. Physically, the imaginary parts of 0mn(s)
(m 6= n) describe the modification of the spontaneous emission rate of a single atom due to its
interaction with the second atom. If the atoms are widely separated from each other (such that
the rate of radiative decay becomes comparable or large compared to the rate of the resonant
energy transfer), the coherent RDDI can be strongly suppressed relative to the value predicted
by simple perturbation theory. This suppression of RDDI energy transfer may occur even for
small separations if the bare atomic transition occurs in a spectral range where the EM density
of states is very large. Similar damping effects are expected if the atoms are strongly coupled to
phonons of the host material in which they are embedded. However, as we show below, in some
idealized 1D systems the imaginary part of 0m,n(s) can lead to energy transfer even when the
RDDI coupling obtained using RS perturbation theory of section 4 is zero (see figure 8(b) and
related discussion).

Equations (17) can be written in the compact matrix form(
i h̄s − E10 −0aa −0ab

−0ba i h̄s − E10 −0bb

) (
A
B

)
=

(
i h̄
0

)
. (19)

Similar to the derivation of equation (10), it is easy to verify that 0ab = 0ba, which we denote
by a single complex number 0m . Likewise, we introduce the simplified notation for the self-
energies 0a = 0aa and 0b = 0bb. It follows that(

A
B

)
=

1

(i h̄s − E0 −0a) (i h̄s − E0 −0b)−02
m

(
ih̄s − E10 −0a 0m

0m i h̄s − E10 −0b

) (
i h̄
0

)
.

(20)

Since our system was initially prepared in state |a〉, the evolution of the system toward state
|b〉is fully characterized by the coefficient b(t) obtained from the inverse Laplace transform of
B. Thus knowledge of B suffices for obtaining RDDI dynamics. From (20), we have

B(s)=
i h̄0m(s)

(i h̄s − E10 −0a(s)) (i h̄s − E10 −0b(s))−02
m(s)

. (21)

This non-perturbative result is valid in the absence of higher order processes such as multi-
photon generation. We note that equation (21) can be also derived using an equivalent resolvant
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operator [9, 33]. Our trial wavefunction (equation (14)) spans the one excitation sector and the
three excitation sector. The two excitation sector (with one atom excited in the presence of one
photon) is not included since states in this sector do not couple directly to the initial states of
interest through the dipole interaction Hamiltonian considered here.

In the (perturbative) pole approximation (i h̄s = E10), the parameters 0a, 0b and 0m

become divergent near a photonic band edge (or in the presence of discrete modes where
the summations cannot be transformed into integrations). However in our non-perturbative
variational calculations (s remains a general complex number), these singularities are regulated
by the dressing of the atomic levels by photons and the resulting repulsion of the atomic level
from the cavity mode (vacuum Rabi splitting). In this case, one must calculate the exact inverse
Laplace transform without any approximations or solve the time domain equations directly.

5.2. Equivalent classical oscillator model

We now introduce a classical EM model, mathematically equivalent to formula (21), that
enables computation of dipole–dipole response using standard numerical techniques for solving
Maxwell’s equations. Consider a system of two coupled oscillators:

i Ṗa +ω10 Pa = (ρ/h̄)Erad(t, ra), (22a)

i Ṗb +ω10 Pb = (ρ/h̄)Erad(t, rb), (22b)

where Pa,b are the respective complex dipole moments of the oscillators, ω10 is their natural
oscillation frequency (chosen to match the atomic bare transition frequency ω10 = E10/h̄) and ρ
is a constant to be determined later. Also ra,b are the positions of the first and second oscillator,
respectively. The total radiated electric field is given by Erad(t, ri)= Ei i + Ei j , where Ei j is the
field produced at point i due to a dipole located at point j with i, j = {a, b}. In other words,
the radiation field at each oscillator is the sum of the field radiated by the oscillator itself plus
that produced by the other oscillator. The divergent static part of the field is not included here.
The field amplitude Erad(t, r) is required to satisfy Maxwell’s equations in the confined strong-
coupling geometry of interest. Since we use complex representations of the polarizations and
electric fields, only first order time derivatives appear in equation (22). The imaginary parts of
the fields can be eliminated to obtain second order differential equations for the physical field
values. However equations (22) are more simple and computationally convenient.

Assuming only one dipole is initially excited and equal dipole transition matrix elements,
i.e. µa = µb ≡ µ, and taking the Laplace transformation of (22) yield

(is −ω10)Pa(s)− (ρ/h̄) 0a(s)Pa(s)/µ
2
− (ρ/h̄) 0m(s)Pb(s)/µ

2
= Pa(0), (23a)

(is −ω10)Pb(s)− (ρ/h̄) 0b(s)Pb(s)/µ
2
− (ρ/h̄) 0m(s)Pa(s)/µ

2
= 0, (23b)

where we have introduced the interaction energy parameter 0m(s)= µiµ jχi j(s) for i 6= j and
0i(s)= µ2

i χi i(s) in terms of the susceptibilities χi j(s)= Ei j(s)/Pj(s). By choosing ρ = µ2, we
obtain

Pb(s)

Pa(0)
=

i h̄0m(s)

(i h̄s − h̄ω10 −0a(s)) (i h̄s − h̄ω10 −0b(s))−02
m(s)

. (24)

The above formula is mathematically equivalent to equation (21) when the two interacting
atoms experience the same photonic local density of states. It follows that, under this condition,
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a numerical solution of the coupled oscillator model (22) (together with the field equations
for Erad(t, r)) in time domain provides a full description of the RDDI dynamics. Despite
the classical nature of this equivalent oscillator model, it recaptures the effects of quantum
entanglement of the two atoms as described in the state vector (14). In contrast, the semi-
classical MB description [31] neglects the correlations of quantum fluctuations between the
dipoles in favor of more dominant interactions with the environment.

In order to numerically simulate RDDI with equivalent classical oscillators, the initial value
of the dipole moment of the first oscillator is set to unity (corresponding to the excited atom)
while that of the second oscillator is set to zero (to represent the ground state atom). As the
system evolves with time according to equations (22) in conjunction with Maxwell’s equations
within the nanostructured dielectric medium, the first dipole will oscillate and emit EM fields.
The field radiation is calculated using an FDTD algorithm with that particular dipole as a source
term. The radiated field may scatter from the dielectric environment and then influence the
oscillation of the initial dipole. This captures the self-interaction (atomic dressed state) effects
described by 0aa(s)≡ 0a(s) in equations (18)–(21). The radiated field (including self-dressing
effects), upon arriving at the position of the second dipole acts as a driving force that induces
oscillations. The resulting radiation from the second dipole is added to the total EM field
through Maxwell’s equation. The process continues and the fields due to both dipoles interact
with the dielectric environment, cause self-dressing effects, and contribute to the excitation/de-
excitation of each dipole. From the equivalence between equations (24) and (21), it is evident
that the quantity |Pa(t)/Pa(0)|2 corresponds to the quantum mechanical probability that an
initially excited atom remains excited. Likewise, |Pb(t)/Pa(0)|2 gives the time domain quantum
dynamics of the energy transfer between the two atoms.

The numerical integration of equation (22) is performed using the Crank–Nicolson
method [34]. This scheme has been shown to yield stable results in the context of MB
equations [31] and the same applies here. A similar concept of coupled oscillators has been
employed [35] to calculate the non-retarded dispersion force between atoms [36]. Given recent
advances in fabricating 3D photonic crystals enabling strong light–matter coupling at visible
frequencies [37], non-perturbative techniques may be essential in calculating RDDI inside such
structures.

5.3. Illustrations and numerical results

We verify the efficiency of our two-oscillator model in computing dynamical evolution of atomic
systems by first applying it in environments where the system’s behavior is already known. We
consider RDDI between two quantum dot sheets located in free space. The geometry is one
dimensional and analytical solutions for this problem can be readily obtained. As in [31], we
consider a planar layer of identical quantum dots, each of which is cubic with side length of
LD = 4.652 nm and having an electric dipole moment of µ= 1.342 × 10−28 Cm. The transition
wavelength of each quantum dot is λ10 = 1.5µm and the dots are tightly assembled with a
packing density of NA = 1/L2

D. In section 4.1.1, we showed that the RDDI between two such

quantum dot layers is given by 0m R ≡ M =

(
µ2

2Adε0

)
k10 sin(k10 R) where k10 = ω10/c and R

is the distance between the two layers. Also, Ad = L2
d is the average area of each quantum

dot. The quantity M represents only the real part of the interaction coupling. In order to
fully characterize the time domain dynamics of the RDDI process, the full complex coupling
constant [8, 9] must be considered. In the present geometry, the imaginary part is simply
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Figure 8. Panels (a) and (b) depict energy transfer dynamics between two
quantum dot layers in free space when the separation between them is chosen
to be λ10/4 and λ10/2, respectively where λ10 = 1.5µm is the wavelength of
resonant light emission. In all figures, solid lines represent numerically obtained
data using the non-perturbative method of section 5 while dots show analytical
results. Excellent agreement is verified. Quantum dots parameters are presented
in the text. The horizontal axes in both figures represent time t in seconds.

given by 0m I = −

(
µ2

2Adε0

)
k10 cos(k10 R). The self-interaction term 0a,b ≡ 0s can be obtained

by substituting R = 0 in 0m . It follows that 0s R = 0 and 0s I = −

(
µ1µ2

2Adε0

)
k10, where 0s = 0s R +

i0s I . Assuming the first layer is initially excited while the second is in its ground state, equation
(21) provides the coherent RDDI dynamics B(s)=

0m/(i h̄)
(s−(E10−0s)/(i h̄)) (s−(E10−0s)/(i h̄))+(0m/h̄)2

. By
noting that 0s R = 0, The inverse Laplace transform of B(s) then takes

b (t)=
1

2
exp (−i E10 t/h̄) exp (− |0s I | t/h̄)

× {exp (0m I t/h̄) exp (−i0m R t/h̄)− exp (−0m I t/h̄) exp (i0m R t/h̄)} . (25)

For 0m I = 0, the term inside the brackets reduces to sin(0m R t/h̄) whereas for
vanishing 0m R, the energy transfer between the two objects is given by |b(t)|2 =

exp (−2|0s I | t/h̄)sinh(0m I t/h̄)2. Since |0s I |> |0m I |, the energy transfer probability given by
|b(t)|2 never exceeds unity.

Similarly, the probability amplitude of layer one to remain excited after initial excitation is
given by

a(t)=
1

2
exp (−i E10 t/h̄) exp (− |0s I | t/h̄)

× {exp (0m I t/h̄) exp (−i0m R t/h̄)+ exp (−0m I t/h̄) exp (i0m R t/h̄)} . (26)

We consider two specific situations, namely k10 R = (n + 1/2)π and nπ with n being
an integer. In the first, we have 0m I = 0 and in the latter 0m R = 0. For atomic transition
wavelength λ10 = 1.5µm, the first scenario is achieved when R = λ10/4 = 0.375µm. Under
these conditions, 0m R/h̄ = −0s I/h̄ ≈ 3.739 × 1012 s−1 and 0m I = 0. Also note that in these
1D geometries, the Lamb shift 0s R = 0. The excitation probabilities then reduce to |b(t)|2 =

exp(−2|0s I |t/h̄)sin2(0m Rt/h̄) and |a(t)|2 = exp(−2|0s I |t/h̄)cos2(0m Rt/h̄). Figure 8(a) depicts
the close agreement between numerical and analytical results obtained for |a(t)|2 (blue line
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Figure 9. (a) Structure consists of two planar layers of quantum dots (dashed
lines) located at x = Lc/4 and x = 3Lc/4 inside a perfect 1D cavity of length
Lc (see text for more details). Coherent RDDI dynamics for quantum dots
in resonance (λ10 = 1.5µm) with the second (when Lc = 1.5µm) and fourth
(when Lc = 3µm) order modes are shown in (b) and (c) respectively, using the
method of section 5. In case (b), strong interaction is manifested through rapidly
oscillating population inversion exchange between the two quantum objects. In
case (c), very weak light–matter interaction arises since both layers are located
at nulls in the local density of states at the resonant frequency. The insets show
a magnified version of the indicated areas. Here quantum fluctuations between
the layers occur through off-resonant interactions. Quantum dot parameters are
presented in the text. The horizontal axes in (b) and (c) represent time t in
seconds.

starting at 1) and |b(t)|2 (green line starting at zero) when R ≈ 0.375µm. Due to spontaneous
emission probability from each dot layer, the system ends up in the ground state with one photon
emitted.

In the second scenario, when R = λ10/2 ≈ 0.75µm, the excitation probabilities evolve as
|b(t)|2 = exp(−2|0s I |t/h̄)sinh2(0m I t/h̄) and |a(t)|2 = exp(−2|0s I | t/h̄)cosh2(0m I t/h̄). Since
0s I = −0m I neither expression exceeds unity. The dynamical evolution of the system in this
case is illustrated in figure 8(b) where again good agreement between analytical and numerical
results is evident.

An amusing characteristic of this choice of parameters is that the system initially decays
and asymptotically approaches a probability of 1/4 that each atom remains excited. This feature
is a peculiarity of 1D geometries where it is possible to cancel spontaneous emission from both
atoms by destructive interference.

To further illustrate our technique, we revisit the problem of RDDI between two layers of
quantum dots located inside a 1D metallic cavity (see figure 9(a)). We use the same parameters
as before and we consider two different cavity lengths: Lc = 1.5µm and Lc = 3µm. In both
cases, the layers are assumed to be positioned at Lc/4 and 3Lc/4. As before, the transition
wavelength is λ10 = 1.5µm. For Lc = 1.5µm, the atomic transition frequency matches the
second order cavity mode and the two layers are located at its maximum amplitude. Since both
atoms couple strongly to the same mode, there is a significant dipole–dipole interaction. This is
clearly observed in figure 9(b) where large and rapid amplitude oscillations occur.

On the other hand, when the cavity length is Lc = 3µm, the radiated fields match the
fourth order cavity mode. Since both quantum dot layers are located at the nodes of this resonant
mode, very weak interaction is expected. Figure 9(c) confirms this expectation. The first excited
quantum dot layer remains mostly in its initial state while the second remains largely at its
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Figure 10. (a) Spontaneous emission dynamics of a quantum dot layer located
at the middle of a high dielectric region in a 1D the photonic crystal when the
atomic transition frequency (corresponding to λ10 = 1.5µm) is close to the first
band edge. The geometry is the same as in figure 6(a) except with the high
dielectric regions made of SiO2 with ε(r)= 2.25. The horizontal axis represents
time t in seconds. (b) Depicts the Fourier transform of the output field, revealing
vacuum Rabi splitting in the emission lineshape. Quantum dots parameters are
presented in the text.

ground state. The figure insets show the fine details of the evolution arising from weak coupling
of the atoms to non-resonant cavity modes.

We note that for the resonant case of Lc = 1.5µm, high spatial resolution of Lc/500 and a
Courant factor of S = c dt/dx = 1/2 were required for the FDTD calculations to yield accurate
non-divergent results.

We next test our oscillator model for single atom emission in the 1D photonic crystal
environment studied in [31]. This structure is similar to that depicted in figure 6(a) except
that here the high dielectric layers are made of SiO2 having ε(r)= 2.25 and it exhibits a PBG
between 0.4080< ω a/2π c < 0.4959. We consider a single atom located at the center of a high
dielectric layer with ε(r)= 2.25. The limiting case of single atom is numerically modeled by
placing a classical oscillator at the location of that atom while removing the second oscillators
to infinity. Vacuum Rabi splitting was predicted [31] for an atomic transition frequency of
ω10 a/2πc = 0.403. Figure 10(a) compares the transition probability computed for this system
using our method (oscillatory decaying blue curve) and the same quantity in free space (purely
decaying red curve). Figure 10(b) shows the Fourier transform of the radiated electric field at the
output (calculated near the absorbing boundary layer). Clearly, vacuum Rabi splitting, similar to
that predicted in [31], is observed. Since the classical oscillator model used here and the optical
Bloch equations used in [31] are not identical, the exact ratio of the peak heights is not the same.

Finally we use our equivalent classical oscillator technique to compute the RDDI dynamics
within the 1D photonic crystal shown in figure 6(a). The two atoms are located at the centers
of the high dielectric layers five unit cells apart. As observed before, direct second order
perturbation theory (as well as the previously introduced FDTD algorithm using the one
oscillator model with no back action) predicts singular behavior for the coupling strength.
Here, the high dielectric layers have ε(r)= 12 and the crystal exhibits a PBG in the range
0.2125< ω a/2πc < 0.461. By choosing the lattice constant a = 318.75 nm, the lower band
gap edge ω a/2πc = 0.2125 corresponds to a free space wavelength of 1.5µm. Figure 11(a)
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Figure 11. RDDI between the two quantum layers indicated by yellow arrows in
figure 6(a) when the atomic transition frequency (corresponding to λ10 ≈ 3µm)
lies in the middle of the first band (a) and exactly (λ10 = 1.5µm) at the first
band edge (b). In (a), the near linear dispersion leads to a behavior resembling
free space. On the other hand, in (b) strong light–matter interaction is described
without the unphysical singularities of the second order perturbation theory.
Quantum dots parameters are presented in the text. Horizontal axes in both
figures represent time t in seconds.

shows the system evolution when the atomic transition frequency is in the middle of the first
band. Clearly, the evolution resembles that of free space, since in this range the dispersion is
almost linear. On the other hand, figure 11(b) depicts the interaction dynamics when the atomic
transition frequency coincides with the lower edge of the first band gap.

While second order perturbation theory predicts singular behavior, our time domain
analysis predicts a well-defined strong interaction manifested by the highly oscillatory
probabilities. Clearly our strong-coupling analysis, using an equivalent pair of classical
oscillators, circumvents unphysical singularities of the previous perturbative analysis.

6. Phonon dephasing and non-radiative damping

Our analysis in the previous sections describes the interaction of two atoms sharing one exciton
in the absence of any influence from the environment except from radiative decay. It does not
account for depletion of population inversion due to dephasing effects or non-radiative decay
arising from phonons in the host material. In general, the dynamics of energy transfer will
depend on the interplay between RDDI and environmental effects. If the RDDIs between the
two atoms are much stronger than the dephasing and damping effects, then the energy transfer
process is coherent and is referred to as CRET. This is accurately modeled by the equivalent two-
oscillator model of section 5.2. On the other hand, if interaction with the environment dominates
over RDDI, decoherence occurs and entanglement of the quantum state of the two atoms is lost.
This is described using MB equations [31]. In this case the exact quantum correlation between
the two atomic dipoles is replaced by mean-field approximation in which one dipole exerts a
semi-classical, effective, electric-field on the other dipole.

We present below a brief description for two interacting atoms sharing one exciton in the
Heisenberg picture. We derive the operator form of the MB equations and discuss a mean-field
factorization in which the system is reduced to the semiclassical MB description. This modifies
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the CRET process to the more common process of FRET (where dephasing and damping effects
are significant).

The full quantum mechanical Hamiltonian describing the interaction of multiple two-level
atoms with a quantized EM field can be written as [38]

H =

∑
λ

h̄ωλa
+
λaλ +

h̄ω10

2

∑
j

σ z
j + ih̄

∑
λ, j

{
Eµ j · g

(
a+
λσ j EEλ

(
r j

)
− σ +

j aλ EE∗

λ

(
r j

))}
(27)

+ih̄
∑
λ, j

{
Eµ j · g

(
a+
λσ

+
j

EEλ

(
r j

)
− σ jaλ EE∗

λ

(
r j

))}
.

Here, σ z
j is the atomic inversion operator while σ +

j and σ j represent the atomic excitation
and de-excitation operators (for the j th atom located at r j ), respectively. They satisfy the
commutation relations: [σ +

i , σ j ] = σ z
i δi j , [σi , σ

z
j ] = 2σiδi j and [σ +

i , σ
z
j ] = −2σ +

i δi j In equation
(27), a+

λ and aλ are the creation and annihilation operators for photons in mode λ; ω10 and ωλ
are the atomic transition frequency and the photonic mode frequency, respectively and Eµ j is the
vector transition dipole matrix element of atom j . Finally { EEλ(r)} are a complete set of EM
eigenmodes of the photonic structure (satisfying periodic boundary conditions over volume V )

and the coupling constant is given by g =
1
h̄

(
h̄ω10
2ε0V

)1/2
.

The full Hamiltonian (27) includes (counter-rotating) terms usually ignored in the
rotating wave approximation. Introducing the Pauli operators σ x

j = σ j + σ +
j and σ y

j = i(σ j − σ +
j ),

equation (27) can be written as

H =

∑
λ

h̄ωλa
+
λaλ +

h̄ω10

2

∑
j

σ z
j −

∑
j

{
Eµ j · Ê

(
r j

)
σ x

j

}
. (28)

Here the electric field operator Ê(r j)= i
∑

λ

{
h̄g

(
aλ EE∗

λ(r j)− a+
λ

EEλ(r j)
)}

. In deriving (28) we

assume that Heisenberg operators of different atoms commute and they in turn commute with
the field operators [36]. Using the Heisenberg equation of motion (ih̄ d Â

dt = [ Â, H ]), we obtain

dσ x
j

dt
= −ω10 σ

y
j , (29a)

dσ y
j

dt
= ω10 σ

x
j +

2

h̄
Eµ j · Ê

(
r j

)
σ z

j , (29b)

dσ z
j

dt
= −

2

h̄
Eµ j · Ê

(
r j

)
σ

y
j , (29c)

daλ
dt

= −iωλaλ + g
∑
λ, j

{(
Eµ j · EEλ

(
r j

))
σ x

j

}
. (29d)

The summation over j in (29d) provides atom–atom interaction as mediated by EM modes
of the structure. Provided that operator products of the form Ê(r j) σ

y,z
j are treated exactly, the

quantum expectation values of equation (29) include the effects of entanglement between the
atoms. However, if the system is interacting with a thermal bath of phonons, decoherence effects
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lead to a de-correlation of fluctuations between atomic and field operators. This motivates the
mean field factorization 〈Ê(r j) σ

y,z
j 〉 = 〈Ê(r j)〉〈σ

y,z
j 〉 and reduces equations (29a)–(29c) to

d

dt


〈
σ x

j

〉〈
σ

y
j

〉〈
σ z

j

〉
 =

 0 −ω10 0
ω10 0 2Eµ j · EE (t) /h̄
0 −2Eµ j · EE (t) /h̄ 0

 
〈
σ x

j

〉〈
σ

y
j

〉〈
σ z

j

〉
 , (30)

where we identify the quantum expectation value of the field operators with classical EM fields
satisfying Maxwell’s equations

∇ × EE (r, t)= −µ0
∂ EH (r, t)

∂t
,

∇ × EH (r, t)= EJ (r, t)+ ε0εr
∂ EE (r, t)

∂t
, (31)

EJ (r, t)=

∑
j

{
Eµ j

∂
〈
σ x

j

〉
∂t

δ
(
r − r j

)}
.

In equation (31) we use the notation 〈Ê(r, t)〉 = EE(r, t), and we identify EH(r, t) and EJ (r, t) as
the classical magnetic field and classical polarization current respectively. In this approximation,
quantum entanglement between atoms is no longer accounted for. This is a departure from the
equivalent classical oscillator model presented in section 5.2, where such entanglement effects
play an important role in RDDI dynamics.

Dephasing effects due to interaction with phonons and non-radiative damping arising
from anharmonic phonon decay to lower frequency phonons [39] can be phenomenologically
incorporated in the optical Bloch equations [31]

d

dt


〈
σ x

j

〉〈
σ

y
j

〉〈
σ z

j

〉
 =

 −1/T2 −ω10 0
ω10 −1/T2 2Eµ j · EE (t) /h̄
0 −2Eµ j · EE (t) /h̄ −1/T1

 
〈
σ x

j

〉〈
σ

y
j

〉〈
σ z

j

〉
 −

 0
0

1/T1

 . (32)

Here T2 and T1 are the dephasing and non-radiative damping lifetimes, respectively. Numerical
investigation of equations (32) together with (31) provides detailed dynamics of the system of
interacting atoms under these conditions (decoherence, dephasing and non-radiative damping),
and thus of great importance for FRET imaging experiments.

In order to gain insight into the energy transfer dynamics as described by equations (31) and
(32), we consider the case of two 1D sheets of quantum dots inside a 1D perfect mirror cavity.
This example was investigated in section 5.3 using the equivalent classical oscillator model (see
figure 9) in the case of quantum mechanical pure state evolution. Here we analyze the same
problem under decoherence conditions. Figure 12(a) shows the population inversions of the
two layers as a function of time under the conditions T1 = T2 = ∞. We assume that the first
layer of quantum dot is partially excited with 〈σ

y
1 〉 = 0, 〈σ z

1 〉 = 0.9 and 〈σ x
1 〉 =

√
0.19, while the

second atom is in its ground state with 〈σ z
2 〉 = −1, 〈σ x

1 〉 = 0 and 〈σ
y

1 〉 = 0. Note that the energy
transfer rate obtained in the semi-classical model is less than its pure state counterpart. More
rapid oscillations occur when atomic fluctuations are quantum-mechanically correlated.

Finally, we study the dynamics when T1 = T2 = 10−12 s. Under these conditions, energy
transfer is accompanied by loss of population inversion as expected (figure 12(b)). The character
of the evolution depends on the competition between the dephasing/damping rate and the rate
of energy transfer. If the energy transfer rate is faster than both dephasing and non-radiative
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Figure 12. Dynamics of energy transfer in the presence of environmental
interactions, using MB equations (FRET) for the system considered in figure 9(a)
when the cavity length is L = 1.5µm and the atomic transition frequency
corresponds to a wavelength of λ10 = 1.5µm. Oscillating population inversion of
both sheets of quantum dots is seen in the absence of dephasing/damping (T1 =

T2 = ∞) in (a). On the other hand, (b) depicts the effect of dephasing/damping
on the dynamics when T1 = T2 = 10−12 s. The oscillation dynamics in both (a)
and (b) is clearly slower than in figure 9(b) where quantum entanglement exists.
Horizontal axes in both figures represent time t in seconds.

damping rates, the two atoms will exchange energy several times before decaying to their ground
states. On the other hand if decoherence effects occur on a time scale much less than energy
transfer rate, the exchanges are less frequent or the first excited atom will decay to its ground
state without any appreciable resonant energy transfer.

It would be of interest for future studies to develop models and numerical schemes capable
of treating the gradual transition between CRET and FRET. A possible route towards this goal is
to incorporate dephasing and/or damping effects in the quantum system from the beginning and
to re-derive a new oscillator model that can capture their effects on the system dynamics. For
instance one might try to model the effects of the environment using Brownian oscillators [40].
Such a study will not only be important for FRET imaging techniques, but will also shed light
on the dynamics of decoherence.

7. Conclusion

We have presented a simple derivation of the mathematical equivalence between weak-coupling
RDDI (and CSE) and the Green functions of Maxwell’s equation. We have further demonstrated
a powerful computational algorithm that provides an accurate description of coherent RDDI
in complicated strong-coupling photonic structures using FDTD calculation. Our method
supersedes simple perturbation theory in which singularities may appear at the edge of band
gaps of photonic crystals or in the case of discrete cavity modes. Our analysis is based on the
variational wavefunction approach (equivalent to resolvant operator method) applied to the one-
photon, two-atom sector of the quantum electrodynamics Hilbert space.

Our numerical calculation utilizes an equivalent model of ‘coupled classical oscillators’ in
which two oscillators are coupled to each other through their radiation fields and includes back
reaction from the EM environment. We demonstrated that solving this model (in conjunction
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with Maxwell’s equation) is equivalent to the results obtained from the variational wavefunction
analysis for a quantum-mechanical pure state with entanglement between atoms. However, the
two oscillators model has the advantage of being amenable to time domain analysis, providing
an easy route to RDDI and CSE dynamics. Our numerical algorithm recaptures strong-coupling
effects such as vacuum Rabi splitting inside photonic crystals. This enables accurate calculation
of RDDI between two quantum objects under resonant, strong-coupling conditions, where the
atomic transition frequency matches a cavity resonant frequency or a photonic band edge.

Finally we have compared our pure state quantum dynamics to what happens when
decoherence is enabled by environmental interactions. This regime is described by imposing
mean field approximations on the quantum system. This eliminates correlations in quantum
fluctuations between the two atoms and fields. Under these conditions, The Heisenberg
equations of motions for the atom-field system reduce to MB equations. We presented numerical
results illustrating the slower energy exchange dynamics in FRET compared to CRET. The
gradual transition between the fully coherent interactions and the semi-classical analysis is of
great interest on both practical and theoretical fronts and merits further investigation.

Acknowledgments

We thank Dr Hiroyuki Takeda from International Center for Young Scientists, Japan for his
insightful comments. This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada.

References

[1] Piston D W and Kremers G J 2007 Fluorescent protein FRET: the good, the bad and the ugly Trends Biomed.
Sci. 32 407

[2] Vogel S S, Thaler C and Koushik S V 2006 Fanciful FRET Science 331 re2
[3] Wu P and Brand L 1994 Resonance energy transfer: methods and applications Anal. Biochem. 218 1
[4] Mohseni M, Rebentrost P, Lloyd S and Guzik A S 2008 Enviromental-assisted quantum walks in

photosynthetic energy transfer J. Chem. Phys. 129 174106
[5] Clegg R M, Sener M and Govindjee M 2010 From Forster resonance energy transfer to coherent resonance

energy transfer and back Proc. SPIE 7561 75610C
[6] Brennen G K, Deutsch I H and Jessen P S 2000 Entangling dipole–dipole interactions for quantum logic with

neutral atoms Phys Rev. A 61 062309
[7] Yang S and John S 2007 Exciton dressing and capture by a photonic band edge Phys. Rev. B 75 235332
[8] John S and Wang J 1991 Quantum optics of localized light in photonic band gap Phys. Rev. B 43 12772
[9] Bay S, Lambropoulos P and Molmer K 1997 Atom–atom interaction in strongly modified reservoirs Phys.

Rev. A 55 1485
[10] Kobayashi T, Zheng Q and Sekiguchi T 1995 Resonant dipole–dipole interaction in a cavity Phys. Rev. A

52 2835
[11] Agarwal G S and Gupta S D 1998 Microcavity-induced modification of the dipole–dipole interaction Phys.

Rev. A 57 667
[12] Hopmeier M, Guss W, Deussen M, Gobel E O and Mahrt R F 1999 Enhanced dipole–dipole interaction in a

polymer microcavity Phys. Rev. Lett. 82 4118
[13] Hopmeier M, Guss W, Deussen M, Gobel E O and Mahrt R F 2001 Control of the energy transfer with the

optical microcavity Int. J. Mod. Phys. B 15 3704

New Journal of Physics 15 (2013) 083033 (http://www.njp.org/)

http://dx.doi.org/10.1016/j.tibs.2007.08.003
http://dx.doi.org/10.1126/stke.3312006re2
http://dx.doi.org/10.1006/abio.1994.1134
http://dx.doi.org/10.1063/1.3002335
http://dx.doi.org/10.1117/12.840772
http://dx.doi.org/10.1103/PhysRevA.61.062309
http://dx.doi.org/10.1103/PhysRevB.75.235332
http://dx.doi.org/10.1103/PhysRevB.43.12772
http://dx.doi.org/10.1103/PhysRevA.55.1485
http://dx.doi.org/10.1103/PhysRevA.52.2835
http://dx.doi.org/10.1103/PhysRevA.57.667
http://dx.doi.org/10.1103/PhysRevLett.82.4118
http://dx.doi.org/10.1142/S0217979201008470
http://www.njp.org/


28

[14] Levene M J, Korlach J, Turner S W, Foquet M., Graighead H G and Webb W W 2003 Zero-mode waveguide
for single-molecule analysis at high concentrations Science 299 682

[15] Craig D P and Thirunamachandran T 1998 Molecular Quantum Electrodynamics (New York: Dover)
[16] Kythe P K and Schaferkotter M R 2004 Handbook of Computational Methods for Integration (London:

Chapman and Hall/CRC)
[17] Klimov V, Sekatskii S K and Dietler G 2004 Coherent fluorescence resonance energy transfer between two

dipoles: full quantum electrodynamics approach J. Mod. Opt. 51 1919
[18] Agarwal G S 1975 Quantum electrodynamics in the presence of dielectrics and conductors: IV. General theory

for spontaneous emission in finite geometries Phys. Rev. A 12 1475
[19] Fox M 2006 Quantum Optics: An Introduction (Oxford: Oxford University Press)
[20] Purcell E M 1946 Spontaneous emission probabilities at radio frequencies Phys. Rev. 69 674
[21] John S 1987 Strong localization of photons in certain disordered dielectric superlattices Phys. Rev. Lett.

58 2486
[22] Yablonovitch E 1987 Inhibited spontaneous emission in solid-state physics and electronics Phys. Rev. Lett.

58 2059
[23] John S and Quang T 1995 Localization of superradiance near a photonic band gap Phys. Rev. Lett. 74 3419
[24] Scully M S and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[25] Sakoda K 2004 Optical Properties of Photonic Crystals (Berlin: Springer)
[26] Deinega A and John S 2012 Effective optical response of silicon to sunlight in the finite-difference time-

domain method Opt. Lett. 37 112
[27] Markos P and Soukoulis C M 2008 Wave Propagation: From Electrons to Photonic Crystals and Left-Handed

Materials (Princeton, NJ: Princeton University Press)
[28] Huang Y-G, Chen G, Jin C-J, Liu W M and Wang X-H 2012 Dipole–dipole interaction in photonic crystal

nanocavity Phys. Rev. A 85 053827
[29] John S 1991 Quantum electrodynamics of localized light Physica B 175 87
[30] Wilson S and Hubac I 2009 Brillouin–Wigner Methods for Many-Body Systems (Berlin: Springer)
[31] Takeda H and John S 2011 Self-consistent Maxwell–Bloch theory of quantum-dot-population switching in

photonic crystals Phys. Rev. A 83 053811
[32] Milonni P W and Knight P L 1974 Retardation in resonant interaction of two identical atoms Phys. Rev. A

10 1096
[33] Tannoudji C C, Roc J D and Grynberg G 1998 Atom–Photon Interactions: Basic Processes and Applications

(New York: Wiley)
[34] Garcia A 1999 Numerical Methods for Physics (New York: Benjamin-Cummings)
[35] Eisenschitz R and London F 1930 Z. Phys. 60 491
[36] Milonni P W 1993 The Quantum Vacuum: An Introduction to Quantum Electrodynamics (New York:

Academic) p 100
[37] Juodkazis V, Rosa L, Bauerdick S, Peto L, El-Ganainy R and John S 2011 Sculpturing of photonic crystals

by ion beam lithography: towards complete photonic bandgap at visible wavelengths Opt. Express 19 5802
[38] John S and Quang T 1996 Optical bistability and phase transitions in a doped photonic band-gap material

Phys. Rev. A 54 4479
[39] Roy C and John S 2010 Microscopic theory of multiple-phonon-mediated dephasing and relaxation of

quantum dots near a photonic band gap Phys. Rev. A 81 023817
[40] Mukamel S and Rupasov V 1995 Energy transfer, spectral diffusion, and fluorescence of molecular

aggregates: Brownian oscillator analysis Chem. Phys. Lett. 242 17

New Journal of Physics 15 (2013) 083033 (http://www.njp.org/)

http://dx.doi.org/10.1126/science.1079700
http://dx.doi.org/10.1080/09500340408232502
http://dx.doi.org/10.1103/PhysRevA.12.1475
http://dx.doi.org/10.1103/PhysRev.69.37
http://dx.doi.org/10.1103/PhysRevLett.58.2486
http://dx.doi.org/10.1103/PhysRevLett.58.2059
http://dx.doi.org/10.1103/PhysRevLett.74.3419
http://dx.doi.org/10.1364/OL.37.000112
http://dx.doi.org/10.1103/PhysRevA.85.053827
http://dx.doi.org/10.1016/0921-4526(91)90697-D
http://dx.doi.org/10.1103/PhysRevA.83.053811
http://dx.doi.org/10.1103/PhysRevA.10.1096
http://dx.doi.org/10.1007/BF01341258
http://dx.doi.org/10.1364/OE.19.005802
http://dx.doi.org/10.1103/PhysRevA.54.4479
http://dx.doi.org/10.1103/PhysRevA.81.023817
http://dx.doi.org/10.1016/0009-2614(95)00648-N
http://www.njp.org/

	1. Introduction
	2. Weak coupling resonant dipole--dipole interaction (RDDI) and collective spontaneous emission (CSE)
	2.1. Resonant dipole-dipole interaction
	2.2. Collective spontaneous emission

	3. Computational method
	4. Numerical results for weak light--matter coupling
	4.1. Free space
	4.2. RDDI with resonant cavity modes
	4.3. RDDI in photonic crystals

	5. Strong light--matter coupling
	5.1. Non-perturbative analysis
	5.2. Equivalent classical oscillator model
	5.3. Illustrations and numerical results

	6. Phonon dephasing and non-radiative damping
	7. Conclusion
	Acknowledgments
	References

